Solutions: Homework 4

Nandagopal Ramachandran

November 1, 2019

Problem 1. Show that $f(z)=|z|^{2}=x^{2}+y^{2}$ has a derivative only at the origin.
Proof. Suppose f is complex differentiable at $z=x+i y$ for some $x, y \in \mathbb{R}$. Then, for $h \in \mathbb{R}$, we have

$$
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=\lim _{h \rightarrow 0} \frac{f(z+i h)-f(z)}{i h},
$$

i.e.

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2}+y^{2}-x^{2}-y^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+(y+h)^{2}-x^{2}-y^{2}}{i h}
$$

which reduces to $2 x=-2 i y$, and since $x, y \in \mathbb{R}$, we must have $x=y=0$.
Now, at $z=0$, for any $h \in \mathbb{C}, \frac{f(h)-f(0)}{h}=\frac{|h|^{2}}{h}=\bar{h}$, which converges to 0 as $h \rightarrow 0$. So f is complex differentiable at 0 .

Problem 2. Let G and Ω be open in \mathbb{C}, G connected and suppose f and h are functions defined on $G, g: \Omega \rightarrow \mathbb{C}$, and suppose that $f(G) \subset \Omega$. Suppose that g and h are analytic with $g^{\prime}(z) \neq 0$ for all $z \in f(G)$, that f is continuous, h is one-one, and that they satisfy $h(z)=g(f(z))$ for z in G. Show that f is analytic. Give a formula for $f^{\prime}(z)$.

Proof. Fix $a \in G$ and let $\epsilon \in \mathbb{C}$ be such that $\epsilon \neq 0$ and $a+\epsilon \in G$. Hence $h(a)=g(f(a))$ and $h(a+\epsilon)=g(f(a+\epsilon))$. Since h is one-one, we know that $h(a) \neq h(a+\epsilon)$, hence $f(a) \neq f(a+\epsilon)$. Also

$$
\frac{h(a+\epsilon)-h(a)}{\epsilon}=\frac{g(f(a+\epsilon))-g(f(a))}{f(a+\epsilon)-f(a)} \frac{f(a+\epsilon)-f(a)}{\epsilon} .
$$

Now, the limit of the left hand side as $\epsilon \rightarrow 0$ is $h^{\prime}(a)$; so the limit of the right hand side exists. Since $\lim _{\epsilon \rightarrow 0}(f(a+\epsilon)-f(a))=0$,

$$
\lim _{\epsilon \rightarrow 0} \frac{g(f(a+\epsilon))-g(f(a))}{f(a+\epsilon)-f(a)}=g^{\prime}(f(a)) .
$$

Hence we get that

$$
\lim _{\epsilon \rightarrow 0} \frac{f(a+\epsilon)-f(a)}{\epsilon}
$$

exists since $g^{\prime}(f(a)) \neq 0$, and $f^{\prime}(a)=\left(h^{\prime}(a)\right)\left(g^{\prime}(f(a))^{-1}\right.$. Since h and g are analytic and f is continuous, the RHS is continuous, hence f is analytic.

